САТУРН: ВЕЛИКОЛЕПИЕ КОЛЕЦ
Диаметр 120 000 км
Масса 5,7 * 1026 кг
Плотность 690 кг/м³
Период вращения 10 ч 40 мин 30с
Среднее расстояние от Солнца 9,54 а. е.
Период обращения 29,46 года
Эксцентриситет орбиты 0,056
Наклон орбиты 2,5°
Сатурн представляется невооруженному глазу звездой 1 -и звездной величины, он значительно слабее по блеску, чем Венера, Юпитер и Марс. Его тусклый свет, имеющий матово-белый оттенок, а также очень медленное движение по небу создали планете дурную славу, и рождение под знаком Сатурна считалось недобрым предзнаменованием.
В телескоп средней силы хорошо заметно, что шар Сатурна сильно сплюснут — еще сильнее, чем Юпитер. На поверхности планеты выделяются параллельные экватору полосы, правда менее четкие, чем у Юпитера. В этих полосах можно рассмотреть многочисленные, хотя и неяркие детали, именно по ним Уильям Гершель определил период вращения Сатурна. Он оказался очень коротким — всего 10 ч 16 мин. Изредка на диске планеты появляются и более заметные детали. Так, в феврале 1876 г. на экваторе Сатурна возникло большое белое пятно, обращавшееся с периодом 10 ч 14 мин. Незначительная разница не должна удивлять: как и у Солнца и Юпитера, скорость вращения атмосферы Сатурна в экваториальных зонах больше, чем близ полюсов.
Светло-желтый Сатурн внешне выглядит скромнее своего соседа — оранжевого Юпитера. У него нет столь красочного облачного покрова, хотя структура атмосферы почти такая же. Как и Юпитер, Сатурн в основном состоит из водорода и гелия Только содержание гелия в его атмосфере ниже: он более равномерно распределен по всей массе планеты Вследствие меньшей силы тяготении атмосфера Сатурна глубже юпитерианской. Видимо, у Сатурна мощнее верхний слой светлых перистых аммиачных облаков, что делает его не таким «цветным» и полосатым.
Вдоль экватора планеты проходит гигантское атмосферное течение шириной в десятки тысяч километров, скорость его достигает 500 м/с. Хот пятна атмосферных вихрей на Сатур не уступают по размерам юпитерианскому Большому Красному Пятну, и там наблюдаются грандиозны штормы, видимые даже с Земли.
Ниже атмосферы простираете океан жидкого молекулярного воде рода. На глубине около половины радиуса планеты давление в нем достигает 3 млн атмосфер, и водород уже не может существовать в молекулярном состоянии. Он становится металлическим, хотя и по-прежнему жидким. Течения в этом металлическом океане генерируют довольно сильное магнитное поле Сатурна. В центре планеты находится массивное ядро (до 20 земных масс) из камня, железа и, возможно... льда.
Откуда взяться льду в центре Сатурна, где температура более 10 тыс. градусов? Ведь хорошо знакомая нам кристаллическая форма воды — обыкновенный лед — плавится уже при температуре 0°С при нормальном атмосферном давлении. Еще «нежнее» кристаллические формы аммиака, метана, углекислого газа, которые ученые также называют льдом. Например, твердая углекислота (сухой лед, используемый в различных эстрадных шоу) при нормальных условиях сразу же переходит в газообразное состояние, минуя жидкую стадию.
Но одно и то же вещество может образовывать различные кристаллические решетки. В частности, науке известны кристаллические модификации воды, отличающиеся друг от друга не меньше, чем печная сажа — от химически тождественного ей алмаза. Например, так называемый лед VII имеет плотность, почти вдвое превосходящую плотность обычного льда, и при больших давлениях его можно нагревать до нескольких сот градусов! Поэтому не стоит удивляться тому, что в центре Сатурна при давлении в миллионы атмосфер присутствует лед, т. е. в данном случае смесь из кристаллов воды, метана и аммиака.
КОЛЬЦА САТУРНА
В июле 1610 г. Галилео Галилей опубликовал зашифрованное сообщение такого содержания: «Отдаленнейшую из планет наблюдал тройною». «Отдаленнейшей из планет» в то время считали Сатурн, а его кольца выглядели в телескопе Галилея двумя туманными пятнами по краям планеты.
Предположение, что планета окружена кольцом, высказал в 1655 г. голландец
Христиан Гюйгенс. Поначалу
его гипотеза вызвала ожесточенную критику со стороны ортодоксов.
Кольца Сатурна постоянно будоражили воображение ученых своей уникальной формой. Их исследовали такие блестящие астрономы, механики и математики, как Дж. Д. Кассини, П. С. Лаплас, Дж. К. Максвелл, Ж. А. Пуанкаре. Интересно, что факт разделения колец Сатурна на отдельные узкие кольца предсказал еще в 1755 г. немецкий философ Иммануил Кант, основываясь на своих остроумных теоретических рассуждениях.
Плоскость экватора Сатурна, его колец и спутниковой системы наклонена к плоскости земной орбиты более чем на 26°. Это создает благоприятные возможности для наблюдения колец Сатурна. Чтобы понять, как меняются условия видимости колец для землян, можно проделать следующий простой опыт: поставить на стол чайное блюдце, приподняв один его край (например, подложить под него кусочек сахара). Если опустить глаза на уровень стола и обойти вокруг него, то в течение одного обхода блюдце будет видно как с лицевой (вогнутой) Вихри в атмосфере Сатурна стороны, так и со стороны выпуклого дна и дважды — с ребра. В реальности примерно так все и происходит. Сатурн почти в десять раз дальше от Солнца, чем Земля, поэтому мы всегда смотрим на него как бы со стороны Солнца. В течение одного орбитального оборота (около 30 лет) он обращает к нам то северный, то южный свой полюс. Соответственно и кольца видны то «сверху», то «снизу», а иной раз исчезают совсем (когда они обращены к наблюдателю ребром). Последний раз кольца «встали на ребро» летом 1995 г., и в последующие годы они будут видны «сверху» — из северной полусферы.
С Земли хорошо различимы три кольца — А, В и С — разной яркости. Внешний радиус колец Сатурна равен 137 тыс. километров. Довольно широкое деление Кассини разделяет кольца А и В черной полосой. Менее заметно деление Энке вблизи внешнего края колец. Названы эти деления в честь их открывателей.
В XX в. вблизи Сатурна побывали три американских космических аппарата: «Пионер-11» (октябрь 1979 г.), «Вояджер-1» (ноябрь 1980 г.) и «Вояджер-2» (август 1981 г.). Эти межпланетные станции передали на Землю тысячи фотографий колец Сатурна и его спутников с разрешением до нескольких километров. А просвечивание колец радиосигналами дало возможность изучать их тонкую структуру.
Если
«перепрыгнуть» через полтора миллиарда километров, отделяющих нас от Сатурна, и
взглянуть на кольца с расстояния 100—200 тыс. километров, то окажется, что они
расслаиваются на тысячи колечек. Среди них есть узкие потоки, отклоняющиеся от
круговой орбиты. Края некоторых колец зазубриваются, а сами они колышутся под
гравитационным напором спутников, изгибаясь и образуя волны. Спиральные волны,
эллиптичные кольца, странные переплетения узких колечек... все сюрпризы колец
трудно перечислить.
Ну а если приблизиться к кольцам вплотную, то они окончательно потеряют для нас свою монолитность и превратятся в огромное количество отдельных «спутничков» Сатурна — частиц из обычного водяного льда самой разной величины: от мелких пылинок до глыб с поперечником 10— 15 м. Основная масса колец Сатурна заключена в частицах метровых размеров. Но это не цельные куски льда, а снежные комья, такие же рыхлые, как свежевыпавший земной снег (только там вряд ли есть узорчатые снежинки).
Эти снежные тела вращаются вокруг Сатурна со скоростью около 10 км/с. Их скорости так хорошо уравнены, что соседние частицы кажутся неподвижными по отношению друг к другу. На самом деле они очень медленно перемещаются в разных направлениях — со скоростью 1 — 2 мм/с. Примерно с такой скоростью ползают земные улитки. Время от времени можно наблюдать эффектное зрелище — столкновение двух крупных частиц. Вот две глыбы размером с садовый домик начинают медленно соприкасаться друг с другом, сдвигая с поверхности целые сугробы рыхлого снега. Им не повезло: они не выдержали взаимного давления при ударе и медленно развалились на части. Типичная для колец «катастрофа» при скорости миллиметр в секунду! Два больших остатка первоначальных тел продолжают движение, а сброшенные с них сугробы снега, комки и снежная пыль неспешно разлетаются в разные стороны, сверкая в лучах далекого Солнца. Через несколько дней «пострадавшие» частицы снова вырастут, поймав и поглотив огромное На крупномасштабном количество более мелких снежков в кольцах. Сами кольца чрезвычайно тонки: около 10—20 м толщиной. По отношению снимке видно, что ширины к толщине листок папиросной бумаги гораздо толще планетных колец. Если уменьшить кольца Сатурна до кольца Сатурна состоят метрового размера, то их толщина составит тысячную долю миллиметра. В кольце В частицы расположены так густо, из огромного кол-ва что, залетев в середину, мы потеряем из виду звезды. Впрочем, тьмы здесь нет — кругом светятся отраженным, тонких колечек преломленным и рассеянным солнечным светом тысячи снежных тел. Есть более прозрачные участки, например кольцо С или деление Кассини; суммарная площадь частиц в них не превышает нескольких процентов от площади поверхности кольца.
Если приподняться над плоскостью колец, то можно увидеть бесконечное снежное поле. Внутри него возвышается гигантское полушарие Сатурна, освещенное Солнцем. Основная часть системы сатурнианских колец имеет ширину 60 тыс. километров (на этом поле уместятся сотни таких планет, как Земля). Но вот равномерная гладкость колец нарушается и они изгибаются волнами высотой в несколько сот метров. Это результат гравитационного влияния спутника. Когда Солнце стоит низко над плоскостью колец, лучи его падают на верхушки этих колоссальных «гор», а «долины» остаются в тени. Подобную картину запечатлели «Вояджеры» во время своего пролета возле Сатурна. Именно так скользили солнечные лучи по поверхности колец в 1995 г., когда кольца Сатурна земляне видели с ребра.
В соответствии с законами Кеплера частицы на разных радиусах кольца движутся с различными скоростями: чем ближе к планете, тем быстрее. В наиболее плотном кольце есть область, где частицы обращаются с периодом 10,5 ч, т. е. с той же угловой скоростью, с какой вращается Сатурн. Это значит, что относительно поверхности планеты они остаются неподвижными. Подобным образом «висят» над Землей геостационарные спутники, ретранслирующие теле- и радиосигналы наземных станций, — их период обращения равен 24 ч.
Благодаря этой особенности вращения внутри кольца В наблюдаются «спицы» — вытянутые по радиусу облака мелкой пыли, которые действительно напоминают спицы колеса. Появление их связано с тем, что мелкие снежные пылинки колец получают небольшой электрический заряд под воздействием солнечного ветра. Естественно, они реагируют на магнитное поле Сатурна. В кольце В эти пылинки обладают относительно линий магнитного поля планеты самой малой скоростью, поэтому они могут образовывать «спицы» внушительных размеров — десятки тысяч километров в длину; иначе из-за кеплеровского движения они должны были бы распадаться.
СПУТНИКИ
К 1995 г. у Сатурна было известно 22 спутника, которые названы в честь героев античных мифов о титанах и гигантах. Почти все эти космические тела светлые и состоят преимущественно из водяного льда. Их плотность 1200—1400 кг/м³ (за исключением Титана). У наиболее крупных спутников формируется внутреннее каменистое ядро.
Большинство спутников, кроме Гипериона и Фебы, имеет синхронное собственное вращение — они повернуты к Сатурну всегда одной стороной (как Луна по отношению к Земле). Информации о вращении самых мелких спутников нет. Сделаем краткий обзор спутников Сатурна, начиная с ближайших к планете.
На внешнем краю колец Сатурна с помощью межпланетных аппаратов и космических телескопов обнаружено десять маленьких (диаметрами 10—100 км) ледяных спутников. Два из них — Прометей и Пандора (радиусы орбит — 139 и 142 тыс. километров) — как бы «стерегут узкое кольцо, расположенное между ними. Эти спутники-"пастухи", вызывая у него сильное возмущение, создают иллюзию переплетенного в косичку кольца. Два других — Янус и Эпиметий — находятся практически на одной орбите радиусом 151 тыс. километров. Они «танцуют» на орбите, периодически меняясь местами (то один, то другой спутник приближается к планете).
Мимас был открыт У. Гершелем в 1789 г. (вместе с другим спутником — Энцеладом). Он имеет сферическую форму. Огромный кратер, названный Гершель, шириной 130 км достигает 1/3 диаметра самого спутника (400 км). Очевидно, это след от падения гигантского метеорита. Тело несколько большего размера могло просто расколоть спутник на части. Радиус орбиты Мимаса 185,5 тыс. километров.
Энцелад (диаметр 500 км, радиус орбиты 238 тыс. километров) отражает практически 100% падающего на него света. Это самое светлое тело Солнечной системы, вероятно, покрытое тонким сплошным слоем молодого инея. Энцелад — наиболее геологически активный спутник Сатурна. На нем могут быть водные вулканы (гейзеры), которые обновляют иней на поверхности и служат источником вещества для разреженного пылевого кольца вдоль орбиты спутника. Энергетический источник вулканической и геологической активности Энцелада неизвестен.
Тефия (диаметр 1050 км, радиус орбиты 295 тыс. километров) примечательна кратером Одиссей шириной 400 км (2/5 диаметра спутника) и гигантским каньоном Итака, протянувшимся на 3 тыс. километров. Это единственный спутник в Солнечной системе, имеющий два маленьких (размером 20 км) коорбитальных спутника — Телесто и Калипсо, расположенных на 60° впереди и позади Тефии — в так называемых точках Лагранжа. Три спутника на одной орбите! Аналогом может служить только Юпитер, который подобным образом «пасет» на своей орбите два скопления астероидов. Тефия открыта вместе с Дионой в 1684 г. Джованни Доменико Кассини.
Диона (диаметр 1120 км, радиус орбиты 377 тыс. километров) похожа на Тефию и имеет маленький коорбитальный спутник Елену на 60° впереди себя. Был ли, а если был, то куда делся второй коорбитальный спутник на 60° позади — неизвестно.
Рея (диаметр 1530 км, радиус орбиты 527 тыс. километров) — густо-кратерированное тело, второй по размерам (после Титана) спутник Сатурна. Рея менее геологически активна, чем Диона, на поверхности которой заметны деформации коры. Открыта Дж. Д. Кассини в 1672 г.
Титан — самый крупный спутник Сатурна — весит в 20 раз больше всех остальных спутников, вместе взятых. Это второй по величине (после Ганимеда) спутник планеты в Солнечной системе: его диаметр 5150 км — больше, чем у Меркурия. Радиус его орбиты 1,222 млн километров. Открыт в 1655 г. X. Гюйгенсом.
Плотность Титана — 1880 кг/м³. Его внутреннее строение похоже на строение
юпитерианских спутников Ганимеда и Каллисто, т. е. у него есть каменистое ядро и
ледяная мантия. Из-за более низкой, чем у спутников Юпитера, температуры, при
которой проходило его образование, Титан может содержать кроме водяного льда и
другие, более летучие льды — аммиачный и метановый.
Уникальность Титана в том, что он обладает мощной атмосферой с густой аэрозольной дымкой и облаками. Это единственный спутник в Солнечной системе, поверхность которого недоступна для наблюдений обычными оптическими средствами. Цвет Титана — красно-коричневый, с сезонными изменениями. Состав атмосферы — азот с примесью метана и, возможно, аргона; давление на поверхности 1,6 атмосферы.
Теоретические модели позволяют говорить о существовании поверхностного этано-метанового океана глубиной до нескольких километров с температурой -180 ºС. Поэтому, как шутливо заметил один американский ученый, «шансы поймать рыбу в океанах Титана ничтожны».
Наличие мощной, 200-километровой атмосферы и поверхностного океана жидких углеводородов на Титане кажется фантастикой. Открыт новый мир, практически целая планета со своими, пока еще мало изученными свойствами и законами. Метеорология Титана очень интересна: несколько слоев облаков, атмосферные течения, дожди из жидкого метана. Ученые кропотливо исследуют сложнейшие химические взаимоотношения водных, метановых, аммиачных Спутник Сатурна Диона и азотных составляющих атмосферы, океана и твердого вещества. Есть ли там суша? Как шумит этановый прибой в ледяных скалах? Часто ли на Титане гремят грозы? Какая сложная органика образовалась после миллиарда лет эволюции холодного океана углеводородов? На эти вопросы пока нет ответов.
Гиперион — темный спутник неправильной формы (330x240x200 км) с хаотическим собственным вращением, период которого меняется на десятки процентов в течение нескольких недель. Он связан с Титаном резонансом 4 : 3 (на четыре оборота вокруг Сатурна, совершаемые Титаном, приходится три орбитальных оборота Гипериона). Радиус его орбиты 1,481 млн километров. Спутник был обнаружен в 1848 г. американскими астрономами Джорджем Бондом и Уильямом Бондом и независимо от них — англичанином Уильямом Ласселлом.
Япет (диаметр 1440 км, радиус орбиты 3,561 млн километров) примечателен резкой асимметрией яркости полушарий — в десять раз! Ученые связывают сильное почернение передней (по ходу движения) стороны Япета с бомбардировкой мелкой пылью от внешнего спутника — Фебы. Япет обладает сильнократерированной поверхностью. Открыт Дж. Д. Каесини в 1671 г.
Феба — самый темный и далекий (12,95 млн километров) спутник Сатурна, вращается вокруг планеты в обратном направлении. Диаметр этого почти шарообразного спутника — 220 км. Феба делает один оборот вокруг Сатурна за 1,5 года. Обратим внимание: у двух соседних планет — Сатурна и Юпитера — на внешних границах их спутниковых систем располагаются обратные спутники, что указывает на сходство происхождения этих загадочных объектов. Открыта Феба в 1898 г. американским астрономом Уильямом Пикерингом.
Ученые считают, что у Сатурна есть еще не открытые маленькие спутники, в том числе и на самом краю его спутниковой империи.
ПРОИСХОЖДЕНИЕ КОЛЕЦ
Долгое время считалось, что к Сатурну приблизился неосторожный спутник и был разорван его приливными силами «в клочки». Но данные «Вояджеров» опровергли это распространенное мнение. Сейчас установлено, что кольца Сатурна (и других планет тоже) представляют собой остатки огромного околопланетного облака протяженностью во многие миллионы километров.
Из внешних областей этого облака сформировались спутники, а во внутренней образование спутников было «запрещено». Так как скорости взаимных соударений растут при приближении к планете, возле каждой планеты имеется область, где частицы, достигнув определенных размеров, начинают разваливаться от взаимных столкновений. Миллиарды лет соударений — и 10-метровые частицы дошли до такого рыхлого состояния, что рассыпаются от малейшего толчка на скорости миллиметр в секунду! Любая крупная частица за несколько дней или недель проходит полный цикл от разрушения до восстановления.
Эта взаимная конкуренция, не дающая образоваться крупным спутникам, ослабевает по мере удаления от планеты, и на некотором расстоянии часть вещества превращается в спутники, а часть все еще пребывает в раздробленном состоянии — в виде кольца. Кстати, кольца за время своего существования сделали уже триллион оборотов — гораздо больше, чем спутники или планеты по своим орбитам. Суммарная масса ледяных колец Сатурна сравнима с массой его спутника Мимаса, радиус которого 200 км.
Почему кольца плоские? Их сплющивание — это результат противоборства двух основных сил: гравитационной и центробежной. Гравитационное притяжение стремится сжать систему со всех сторон, а вращение препятствует сжатию поперек оси вращения, но не может помешать ее сплющиванию вдоль оси. Таково происхождение различных космических дисков, включая планетные кольца.