Глава 1


Начало
Глава 1
Глава 2
Глава 3
Глава 4
Практикум
Словарь терминов
Содержание
От Автора

Глава 1


Информация и информационные процессы


1.1. Информация в природе, обществе и технике

 

1.1.1. Информация в неживой природе

В физике, которая изучает неживую природу, информация является мерой упорядоченности системы по шкале «хаос — порядок». Один из основных законов классической физики утверждает, что замкнутые системы, в которых отсутствует обмен веществом и энергией с окружающей средой, стремятся с течением времени перейти из менее вероятного упорядоченного состояния в наиболее вероятное хаотическое состояние.

Например, если в одну половину замкнутого сосуда поместить газ, то через некоторое время в результате хаотического движения молекулы газа равномерно заполнят весь сосуд. Произойдет переход из менее вероятного упорядоченного состояния в более вероятное хаотическое состояние, и информация, которая является мерой упорядоченности системы, в этом случае уменьшится (рис. 1.1).

 


Рис 1.1. Информация в неживой природе

 

 

Термодинамика    Физика-10

В соответствии с такой точкой зрения физики в конце XIX века предсказывали, что нашу Вселенную ждет «тепловая смерть», т. е. молекулы и атомы со временем равномерно распределятся в пространстве и какие-либо изменения и развитие прекратятся.

Однако современная наука установила, что некоторые законы классической физики, справедливые для макротел, нельзя применять для микро- и мегамира. Согласно современным научным представлениям, наша Вселенная является динамически развивающейся системой, в которой постоянно происходят процессы усложнения структуры.

Астрономия-11

Таким образом, с одной стороны, в неживой природе в замкнутых системах идут процессы в направлении от порядка к хаосу (в них информация уменьшается). С другой стороны, в процессе эволюции Вселенной в микро- и мегамире возникают объекты со все более сложной структурой и, следовательно, информация, являющаяся мерой упорядоченности элементов системы, возрастает.

 


Согласно теории Большого взрыва, Вселенная образовалась около 15 миллиардов лет назад в результате взрыва «первоматерии». В первые мгновения материя существовала фактически в форме энергии, а затем на протяжении долей секунды начало образовываться вещество в форме элементарных частиц (электронов, протонов, нейтронов и др.).

Физика-11

В следующий миллион лет основные события развивались в микромире. Из разлетающихся во все стороны элементарных частиц образовывались атомы, т. е. из хаоса возникали системы с более сложной структурой. Сначала возникли атомы самых легких химических элементов (водорода и гелия), а затем — и более тяжелых элементов.

В мегамире в течение последующих миллиардов лет под действием сил гравитационного притяжения из хаоса гигантских облаков пыли и газа формировались сложные структуры — галактики. Наша Солнечная система, в которую входит планета Земля, образовалась около 5 миллиардов лет назад и вместе с сотнями миллионов других звезд образует нашу галактику Млечный Путь (рис. 1.2).

 

Рис 1.2. Развитие вселенной: от первоначального хаоса к сложным системам

 

На поверхности планет стали происходить химические реакции, в результате которых из атомов образовывались более сложные системы — молекулы веществ. В том числе молекула воды, которая состоит из двух атомов водорода и одного атома кислорода (рис. 1.3).

       

 

Рис 1.3. Атом водорода и молекула воды

Химия 8

 


Контрольные вопросы

1. Попробуйте привести примеры перехода от хаоса к порядку (увеличения информации) в окружающем мире.

2. Попробуйте привести примеры перехода от порядка  к хаосу (уменьшения информации) в окружающем мире.

1.1.2. Информация в живой природе

Информация как мера увеличения сложности живых организмов. Примерно 3,5 миллиарда лет назад на Земле возникла жизнь. С тех пор идет саморазвитие, эволюция живой природы, т. е. повышение сложности и разнообразия живых организмов. Живые системы (одноклеточные, растения и животные) являются открытыми системами, так как потребляют из окружающей среды вещество и энергию и выбрасывают в нее продукты жизнедеятельности также в виде вещества и энергии.

Живые системы в процессе развития способны повышать сложность своей структуры, т. е. увеличивать информацию, понимаемую как меру упорядоченности элементов системы. Так, растения в процессе фотосинтеза потребляют энергию солнечного излучения и строят сложные органические молекулы из «простых» неорганических молекул.

Биология 7

Животные подхватывают эстафету увеличения сложности живых систем, поедают растения и используют растительные органические молекулы в качестве строительного материала при создании еще более сложных молекул.

Биологи образно говорят, что «живое питается информацией», создавая, накапливая и активно используя информацию.

Информационные сигналы. Нормальное функционирование живых организмов невозможно без получения и использования информации об окружающей среде. Целесообразное поведение живых организмов строится на основе получения информационных сигналов. Информационные сигналы могут иметь различную физическую или химическую природу. Это звук, свет, запах и др.

Даже простейшие одноклеточные организмы (например, амеба) постоянно воспринимают и используют информацию, например, о температуре и химическом составе среды для выбора наиболее благоприятных условий существования.

Выживание популяций животных во многом базируется на обмене информационными сигналами между членами одной популяции. Информационный сигнал может быть выражен в различных формах: позах, звуках, запахах и даже вспышках света (ими обмениваются светлячки и некоторые глубоководные рыбы).

Генетическая информация. Одной из основных функций живых систем является размножение, т. е. создание организмов данного вида. Воспроизведение себе подобных обеспечивается наличием в каждой клетке организма генетической информации, которая передается по наследству.

Генетическая информация представляет собой набор генов, каждый из которых «отвечает» за определенные особенности строения и функционирования организма. При этом «дети» не являются точными копиями своих родителей, так как каждый организм обладает уникальным набором генов, которые определяет различия в строении и функциональных возможностях.

 

Контрольные вопросы

1. Попробуйте привести примеры перехода от хаоса к порядку (увеличения информации) в живой природе.

2. Попробуйте привести примеры получения, передачи и использования информации живыми организмами.

 

1.1.3. Человек и информация

Примерно 40 тысяч лет назад в процессе эволюции живой природы появился Человек разумный (перевод с латинского «Homo Sapiens»). Человек существует в «море» информации, он постоянно получает информацию из окружающего мира с помощью органов чувств, хранит ее в своей памяти, анализирует с помощью мышления и обменивается информацией с другими людьми.

Способы восприятия информации. Целесообразное поведение человека, так же как и животных, строится на основе анализа информационных сигналов, которые он получает с помощью органов чувств. Чувствительные нервные окончания органов чувств (рецепторы) воспринимают воздействие (например, на глазном дне колбочки и палочки реагируют на воздействие световых лучей) и передают его по нервной системе в мозг.

Анатомия 8

Способы восприятия информации живыми организмами зависят от наличия у них тех или иных органов чувств. Человек может использовать пять различных способов восприятия информации с помощью пяти органов чувств:

• зрения — с помощью глаз информация воспринимается в форме зрительных образов;

• слуха — с помощью ушей и органов слуха воспринимаются звуки (речь, музыка, шум и т. д.);

• обоняния — с помощью специальных рецепторов носа воспринимаются запахи;

• вкуса — рецепторы языка позволяют различить сладкое, соленое, кислое и горькое;

• осязания — рецепторы кожи (особенно кончиков пальцев) позволяют получить информацию о температуре объектов и типе их поверхности (гладкая, шершавая и т. д.).

Наибольшее количество информации (около 90%) человек получает с помощью зрения, около 9% — с помощью слуха и только 1% с помощью других органов чувств (обоняния, осязания и вкуса).

Полученную информацию в форме зрительных, слуховых и других образов человек хранит в памяти, обрабатывает с помощью мышления и использует для управления своим поведением и достижения поставленных целей. Например, при переходе дороги человек видит сигналы светофора и движущиеся автомобили, анализирует полученную информацию и выбирает безопасный вариант перехода.

Информация в форме сообщений. Человек живет в обществе. В процессе общения с другими людьми человек передает и получает информацию в форме сообщений. На заре человеческой истории для передачи информации использовался язык жестов, затем появилась устная речь. В настоящее время обмен сообщениями между людьми производится с помощью сотен так называемых естественных языков (русского, английского и т. д.).

Для того чтобы информация была понятна, язык должен быть известен всем людям, участвующим в общении. Чем большее количество языков вы знаете, тем шире круг вашего общения.


Согласно библейской легенде о вавилонском столпотворении, строившаяся в древнем городе Вавилоне башня не была закончена и разрушилась, так как сотни строителей говорили на различных языках и не понимали друг друга (рис. 1.4).

Рис 1.4. Вавилонская башня


Информация в форме знаний. С самого начала человеческой истории возникла потребность накопления информации для ее передачи во времени из поколения в поколение и передачи в пространстве на большие расстояния. Процесс накопления информации начался с изобретения в IV тысячелетии до нашей эры письменности и первых носителей информации (шумерских глиняных табличек и древнеегипетских папирусов).

Для того чтобы человек мог правильно ориентироваться в окружающем мире, информация должна быть полной и точной. Задача получения полной и точной информации о природе, обществе и технике стоит перед наукой. Процесс систематического научного познания окружающего мира, в котором информация рассматривается как знания, начался с середины XV века после изобретения книгопечатания.

Для долговременного хранения знаний (передачи из поколения в поколение) и распространения их в обществе (тиражирования) необходимы носители информации.

Материальная природа носителей информации может быть различной. До настоящего времени в качестве основного носителя информации используется бумага. В прошлом веке широкое распространение для хранения графической информации получила фото- и кинопленка. В настоящее время для хранения информации широко используются также магнитные носители (аудио- и видеопленки, гибкие и жесткие диски) и оптические носители (CD и DVD диски) (рис. 1.5).

 

Рис 1.5. Первая печатная книга и современный оптичечкий диск

 

Средства массовой информации. Широко известен термин «средства массовой информации» (газеты, радио, телевидение), которые доводят информацию до каждого члена общества. Такая информация должна быть достоверной, актуальной и полезной. Недостоверная информация вводит членов общества в заблуждение и может быть причиной возникновения социальных потрясений. Неактуальная информация не имеет применения в настоящий момент времени, и поэтому никто, кроме историков, не читает прошлогодних газет. Бесполезная информация создает информационный шум, который затрудняет восприятие полезной информации.

 

Контрольные вопросы

 

1. Какие способы и органы чувств использует человек при восприятии информации?

2. Каковы должны быть свойства информации, представленной в форме сообщений?

3. Каковы должны быть свойства информации, представленной в форме знаний?

4. Каковы должны быть свойства информации, распространяемой средствами массовой информации?

 

1.1.4. Информационные процессы в технике

Системы управления техническими устройствами. Функционирование систем управления техническими устройствами связано с процессами приема, хранения, обработки и передачи информации. Системы управления могут выполнять различные функции. Например, такие системы могут поддерживать определенное состояние технической системы.

Так системы автоматической терморегуляции холодильника, утюга и кондиционера обеспечивают поддержание заданной температуры. В системе терморегуляции управляющее устройство получает информацию от температурных датчиков, обрабатывает ее (сравнивает реальную температуру с заданной) и передает команды нагревательному элементу (усилить или уменьшить нагрев) (рис. 1.6).

Рис 1.6. Система управления, регулирующая температуру

 

Системы управления встроены практически во всю современную бытовую технику, станки с числовым программным управлением, транспортные средства и пр.

Системы управления могут обеспечивать функционирование технической системы по заданной программе. Например, системы программного управления обеспечивают выбор режимов стирки в стиральной машине, записи в видеомагнитофоне, обработки детали на станке с программным управлением.

В некоторых случаях главную роль в процессе управления выполняет человек, в других управление осуществляет встроенный в техническое устройство микропроцессор или подключенный компьютер. Например, управление полетом самолета может осуществлять летчик или в режиме автопилота бортовой компьютер. Они получают информацию о режиме полета от датчиков (скорости, высоты и пр.), обрабатывают ее и передают команды на исполнительные механизмы (закрылки, клапаны, регулирующие работу двигателей, и пр.), изменяющие режим полета.

 


Первый микропроцессор Intel 4004, «дедушка» современных процессоров, был разработан в 1971 году специально для использования в автоматизированных системах управления. Процессор включал 2300 электронных переключателей, обладал памятью объемом 640 байтов и мог выполнять 100 тысяч операций в секунду (рис. 1.7).

Рис 1.7. Первый микропроцессор Intel 4004


Роботы. Роботами называются автоматические устройства, предназначенные для осуществления научных, производственных и других работ. Роботы могут иметь различные внешний вид и размеры, но все они выполняют те или иные действия на основании заложенной в них программы обработки информации.

Промышленные роботы обычно заменяют человека в тех отраслях производства, где требуется проведение утомительных и однообразных работ (например, конвейерная сборка автомобилей и электронных устройств), опасных технических работ (например, работа с радиоактивными материалами), а также работ, где присутствие человека физически невозможно (например, автоматические космические и глубоководные аппараты).

В последние годы появились роботы, оснащенные органами чувств, аналогичными органам чувств человека (зрение, слух, тактильные ощущения), имеющие память и способные обрабатывать полученную информацию и осуществлять целенаправленные действия. Такие роботы могут работать дома (уже производится робот-пылесос), в больнице (экспериментальные образцы разносят больным лекарства), на других планетах (луноходы и марсоходы путешествуют по поверхностям небесных тел) и т. д.

 


Большой интерес всегда вызывают роботы, подобные человеку или живот ным по внешнему виду и действиям. Они могут ходить, преодолевать препятствия, реагировать на внешние раздражители и даже разговаривать (рис. 1.8).

Рис 1.8. "Собакообразный" и "человекообразный" роботы



Информационные и коммуникационные технологии.В современном информационном обществе главным ресурсом является информация, использование которой базируется на информационных и коммуникационных технологиях. Информационные и коммуникационные технологии являются совокупностью методов, устройств и производственных процессов, используемых обществом для сбора, хранения, обработки и распространения информации.

Во второй половине прошлого, XX века в связи с бурным ростом объема информации начали создаваться специальные технические устройства, предназначенные для обработки, хранения и приема/передачи информации в цифровой форме.

Универсальным устройством обработки информации является компьютер. Подключаемые к компьютеру периферийные устройства (принтеры, сканеры, цифровые камеры и др.) позволяют вводить информацию в компьютер в цифровой форме и представлять ее в форме, удобной для человека. Для передачи информации по компьютерным сетям используются модемы и другие сетевые устройства.
 

Глава 2. компьютер как универсальное устройство обработки информации

Контрольные вопросы

1. Приведите примеры систем управления техническими устройствами.

2. Приведите примеры использования роботов в различных сферах деятельности.

3. Приведите примеры использования информационных и коммуникационных технологий.

 

1.2. Кодирование информации с помощью знаковых систем

 

1.2.1. Знаки: форма и значение

С древних времен знаки используются человеком для долговременного хранения информации и ее передачи на большие расстояния.

Форма знаков. В соответствии со способом восприятия знаки можно разделить на зрительные, слуховые, осязательные, обонятельные и вкусовые, причем в человеческом общении используются знаки первых трех типов.

К зрительным знакам, воспринимаемым с помощью зрения, относятся буквы и цифры, которые используются в письменной речи, знаки химических элементов, музыкальные ноты, дорожные знаки и т. д.

К слуховым знакам, воспринимаемым с помощью слуха, относятся звуки, которые используются в устной речи, а также звуковые сигналы, которые производятся с помощью звонка, колокола, свистка, гудка, сирены и т. д.

Для слепых разработана азбука Брайля, которая использует осязательный способ восприятия текстовой информации.

В коммуникации многих видов животных особую роль играют обонятельные знаки. Например, медведи и другие дикие животные помечают место обитания клочьями шерсти, сохраняющей запах, чтобы отпугнуть чужака и показать, что данная территория уже занята.

Для долговременного хранения знаки записываются на носители информации.

Для передачи информации на большие расстояния используются знаки в форме сигналов. Всем известны световые сигналы светофора, звуковые сигналы школьного звонка оповещают о начале или конце урока, электрические сигналы передают информацию по телефонным и компьютерным сетям, электромагнитные волны передают сигналы радио и телевидения.

Значение знаков. Знаки отображают объекты окружающего мира или понятия, т. е. имеют определенное значение (смысл).

Знаки различаются по способу связи между их формой и значением. Иконические знаки позволяют догадаться об их смысле, так как они имеют форму, похожую на отображаемый объект. Примером таких знаков являются значки на Рабочем столе операционной системы компьютера, например значок Мой компьютер.

Символами называются знаки, для которых связь между формой и значением устанавливается по общепринятому соглашению. Примером таких знаков являются символы химических элементов, отображающие атомы химических веществ (табл. 1.1).

Если неизвестно соглашение о связи формы и значения символов, то ничего нельзя сказать о смысле информации, записанной такими знаками. Существуют найденные археологами и до сих пор нерасшифрованные тексты на древних языках, так как неизвестно значение знаков, которыми они записаны.

 

Таблица 1.1. Иконические знаки и символы
 

Тип знака  

 Форма знака  

Отображаемый объект

Иконический знак  

  

 

Символ  

 H  

  

 


В современном мире широко применяется шифрование, которое использует секретный ключ в качестве соглашения о связи формы символов с их значениями. Если секретный ключ неизвестен, то содержание передаваемого текста понять невозможно.

 

Один и тот же символ может иметь различное значение в разных знаковых системах. Например, знак «О» используется в качестве:

• буквы «О» в русском алфавите;

• буквы «О» [ои] в английском алфавите;

• цифры 0 в системах счисления;

• символа химического элемента «О» (кислорода) в таблице Д. И. Менделеева.


Контрольные вопросы

1. Приведите примеры зрительных, слуховых, осязательных, обонятельных и вкусовых знаков. Какие типы знаков применяются в человеческом общении?

2. Приведите примеры знаков в форме сигналов.

3. В чем состоит различие между иконическими знаками и символами?

4. Приведите примеры символов, которые имеют различное значение в нескольких знаковых системах.

 

1.2.2. Знаковые системы

Знаковые системы являются наборами знаков определенного типа. С некоторыми знаковыми системами вы хорошо знакомы и постоянно ими пользуетесь (языки и системы счисления), с другими познакомитесь в этом пункте.


Каждая знаковая система строится на основе определенного алфавита (набора знаков) и правил выполнения операций над знаками.


 

Естественные языки. Человек широко использует для представления информации знаковые системы, которые называются языками. Естественные языки начали формироваться еще в древнейшие времена в целях обеспечения обмена информацией между людьми. В настоящее время существуют сотни естественных языков (русский, английский, китайский и др.).

В устной речи, которая используется как средство коммуникации при непосредственном общении людей, в качестве знаков языка используются различные звуки (фонемы).

В основе письменной речи лежит алфавит, т. е. набор знаков (букв), которые человек различает по их начертанию. В большинстве современных языков буквы соответствуют определенным звукам устной речи. Алфавит русского языка называется кириллицей и содержит 33 знака, английский язык использует латиницу и содержит 26 знаков.

На основе алфавита по правилам грамматики образуются основные объекты языка — слова. Правила, согласно которым из слов данного языка строятся предложения, называются синтаксисом. Необходимо отметить, что в естественных языках грамматика и синтаксис языка формулируются с помощью большого количества правил, из которых существуют исключения, так как такие правила складывались исторически.

Формальные языки. В процессе развития науки были разработаны формальные языки (системы счисления, алгебра, языки программирования и др.), основное отличие которых от естественных языков состоит в существовании строгих правил грамматики и синтаксиса.
Например, десятичную систему счисления можно рассматривать как формальный язык, имеющий алфавит (цифры) и позволяющий не только именовать и записывать объекты (числа), но и выполнять над ними арифметические операции по строго определенным правилам.

Существуют формальные языки, в которых в качестве знаков используют не буквы и цифры, а другие символы, например музыкальные ноты, изображения элементов электрических или логических схем, дорожные знаки, точки и тире (код азбуки Морзе).


Физическая реализация знаков в естественных и формальных языках может быть различной. Например, текст и числа могут быть напечатаны на бумаге, высвечены на экране монитора компьютера, записаны на магнитном или оптическом диске.


Генетический алфавит. Генетический алфавит является «азбукой», на которой строится единая система хранения и передачи наследственной информации живыми организмами.

Как слова в языках образуются из букв, так и гены состоят из знаков генетического алфавита. В процессе эволюции от простейших организмов до человека количество генов постоянно возрастало, так как было необходимо закодировать все более сложное строение и функциональные возможности живых организмов.


Генетическая информация хранится в клетках живых организмов в специальных молекулах. Эти молекулы состоят из двух длинных скрученных друг с другом в спираль цепей, построенных из четырех различных молекулярных фрагментов (рис. 1.9). Фрагменты образуют генетический алфавит и обычно обозначаются латинскими прописными буквами {A, G, С, Т}.

Рис 1.9. Модель молекулы генетического кода


Двоичная знаковая система. В процессах хранения, обработки и передачи информации в компьютере используется двоичная знаковая система, алфавит которой состоит всего из двух знаков {0, 1}. Физически знаки реализуются в форме электрических импульсов (нет импульса — 0, есть импульс — 1), а также состояний ячеек оперативной памяти и участков поверхностей носителей информации (одно состояние — 0, другое состояние — 1).

2.2. Устройство компьютера

Именно двоичная знаковая система используется в компьютере, так как существующие технические устройства могут надежно сохранять и распознавать только два различных состояния (знака).


В 60-е годы XX века в СССР учеными Московского государственного университета была разработана и запущена в производство ЭВМ «Сетунь» (всего было произведено 50 экземпляров) (рис. 1.10). «Сетунь» использовала троичное кодирование информации и, соответственно, состояла из устройств, способных находиться в одном из трех возможных состояний.

Рис 1.10. ЭВМ "Сетунь"


Контрольные вопросы

1. Приведите примеры знаковых систем. Какова может быть физическая природа знаков?

2. В чем состоит различие между естественными и формальными языками?

3. Обладают ли генетическим кодом растения? Животные? Человек?

4. Почему в компьютерах используется двоичная знаковая система для кодирования информации?

 

Задания для самостоятельного выполнения

1.1. Задание с развернутым ответом. Заполните нижеприведенную таблицу: введите алфавит и перечислите возможную физическую природу знаков для различных знаковых систем.

Знаковая система  

 Алфавит  

 Физическая природа знаков

Русский язык (письменный)  

  

 

Русский язык (устный)  

  

 

Английский язык (письменный)  

  

 

Десятичная система счисления  

  

 

Генетический алфавит  

  

 

Двоичный компьютерный код  

  

 

 

1.2.3. Кодирование информации

В процессах восприятия, передачи и хранения информации живыми организмами, человеком и техническими устройствами происходит ее кодирование.

Код. Длина кода. В процессе представления информации с помощью знаковой системы производится ее кодирование. Результатом кодирования является последовательность символов данной знаковой системы, то есть информационный код. Примерами кодов являются последовательности букв в тексте, цифр в числе, генетический код, двоичный компьютерный код и т. д.

Код состоит из определенного количества знаков (например, текстовое сообщение состоит из определенного количества букв, число — из определенного количества цифр и т. д.), т. е. имеет определенную длину.


Количество знаков в коде называется длиной кода.


Так, длина кода текста данного учебника составляет около 300 тысяч знаков, а генетический код человека в 10 тысяч раз длиннее, так как состоит из 3 миллиардов знаков генетического алфавита.

Перекодирование информации из одной знаковой системы в другую. Информация, представленная с помощью естественных и формальных языков, может быть выражена в форме устной речи или в письменном виде. Каждая форма представления использует особую знаковую систему, ориентированную на способ ее восприятия. Устная речь использует в качестве знаков набор звуков (фонем) и рассчитана на слуховое восприятие. В основе письменной речи лежит алфавит, т. е. набор знаков (букв), которые человек воспринимает с помощью зрения.

В процессе обмена информацией между людьми часто приходится переходить от одной формы представления информации к другой. Так, в процессе чтения вслух производится переход от письменной формы представления информации к устной и, наоборот, в процессе диктанта или записи объяснения учителя происходит переход от устной формы к письменной. В процессе преобразования информации из одной формы представления (знаковой системы) в другую происходит перекодирование информации.


Перекодирование — это операция преобразования знаков или групп знаков одной знаковой системы в знаки или группы знаков другой знаковой системы.


 

Средством перекодирования служит таблица соответствия знаковых систем (таблица перекодировки), которая устанавливает взаимно однозначное соответствие между знаками или группами знаков двух различных знаковых систем. Ниже приведена табл. 1.2, которая устанавливает соответствие между гласными буквами русского алфавита и фонемами.


В русской письменной речи только шесть гласных букв могут быть озвучены в устной речи соответствующими звуками. Для озвучивания остальных четырех гласных букв используются составные звуки, которые начинаются со звука [j].

 

Таблица 1.2. Соответствие букв и звуков

 

Буквы  

 Звуки (фонемы)

а  

 [а]

о  

 [о]

у  

 [у]

и  

 [и]

ы  

 [ы]

э  

 [э]

е  

 [j] +[э]

ё  

 [j] +[о]

ю  

 [j] +[у]

я  

 [j] +[а]


Контрольные вопросы

1. Приведите примеры кодов и определите их длины.

2. Приведите примеры перекодирования информации из одной знаковой системы в другую. Какие в этих случаях используются таблицы перекодировки?

Задания для самостоятельного выполнения

1.2. Задание с кратким ответом. Перекодируйте с русского письменного языка на русский устный имя Юля.
 

1.3. Количество информации

 

1.3.1. Количество информации как мера уменьшения неопределенности знания

Процесс познания окружающего мира приводит к накоплению информации в форме знаний (фактов, научных теорий и т. д.). Получение новой информации приводит к расширению знаний или, как иногда говорят, к уменьшению неопределенности знания. Если некоторое сообщение приводит к уменьшению неопределенности нашего знания, то можно говорить, что такое сообщение содержит информацию.

Например, после сдачи зачета или выполнения контрольной работы вы мучаетесь неопределенностью, вы не знаете, какую оценку получили. Наконец, учитель объявляет результаты, и вы получаете одно из двух информационных сообщений: «зачет» или «незачет», а после контрольной работы одно из четырех информационных сообщений: «2», «3», «4» или «5».

Информационное сообщение об оценке за зачет приводит к уменьшению неопределенности вашего знания в два раза, так как получено одно из двух возможных информационных сообщений. Информационное сообщение об оценке за контрольную работу приводит к уменьшению неопределенности вашего знания в четыре раза, так как получено одно из четырех возможных информационных сообщений.

Ясно, что чем более неопределенна первоначальная ситуация (чем большее количество информационных сообщений возможно), тем больше мы получим новой информации при получении информационного сообщения (тем в большее количество раз уменьшится неопределенность знания).


Количество информации можно рассматривать как меру уменьшения неопределенности знания при получении информационных сообщений.



Рассмотренный выше подход к информации как мере уменьшения неопределенности знания позволяет количественно измерять информацию. Существует формула, которая связывает между собой количество возможных информационных сообщений N и количество информации I, которое несет полученное сообщение:


N=2I                                                                          (1.1)


 

 

Бит. Для количественного выражения любой величины необходимо сначала определить единицу измерения. Так, для измерения длины в качестве единицы выбран метр, для измерения массы — килограмм и т. д. Аналогично, для определения количества информации необходимо ввести единицу измерения.


За единицу количества информации принимается такое количество информации, которое содержится в информационном сообщении, уменьшающем неопределенность знания в два раза. Такая единица названа битом.


 

Если вернуться к рассмотренному выше получению информационного сообщения о результатах зачета, то здесь неопределенность как раз уменьшается в два раза и, следовательно, количество информации, которое несет сообщение, равно 1 биту.

Производные единицы измерения количества информации. Минимальной единицей измерения количества информации является бит, а следующей по величине единицей — байт, причем:

1 байт = 8 битов = 2 битов.

В информатике система образования кратных единиц измерения несколько отличается от принятых в большинстве наук. Традиционные метрические системы единиц, например Международная система единиц СИ, в качестве множителей кратных единиц используют коэффициент 10n, где n = 3, 6, 9 и т. д., что соответствует десятичным приставкам «Кило» (103), «Мега» (106), «Гига» (109) и т. д.

В компьютере информация кодируется с помощью двоичной знаковой системы, и поэтому в кратных единицах измерения количества информации используется коэффициент 2n.

Так, кратные байту единицы измерения количества информации вводятся следующим образом:

1 килобайт (Кбайт) = 2 байт = 1024 байт;

1 мегабайт (Мбайт) = 210 Кбайт - 1024 Кбайт;

1 гигабайт (Гбайт) = 21 Мбайт = 1024 Мбайт.

Контрольные вопросы

1. Приведите примеры информационных сообщений, которые приводят к уменьшению неопределенности знания.

2. Приведите примеры информационных сообщений, которые несут 1 бит информации.

 

Задания для самостоятельного выполнения

1.3. Задание с выборочным ответом. За минимальную единицу измерения количества информации принят:

1) 1 бод;     2) 1 пиксель;     3) 1 байт;     4) 1 бит.

 

1.4. Задание с кратким ответом. Вычислите, какое количество информации в битах содержится в 1 килобайте, 1 мегабайте и 1 гигабайте.

 

1.3.2. Определение количества информации

Определение количества информационных сообщений. По формуле (1.1) можно легко определить количество возможных информационных сообщений, если известно количество информации. Например, на экзамене вы берете экзаменационный билет, и учитель сообщает, что зрительное информационное сообщение о его номере несет 5 битов информации. Если вы хотите определить количество экзаменационных билетов, то достаточно определить количество возможных информационных сообщений об их номерах по формуле (1.1):

N = 25 = 32.

Таким образом, количество экзаменационных билетов равно 32.

Определение количества информации. Наоборот, если известно возможное количество информационных сообщений N9 то для определения количества информации, которое несет сообщение, необходимо решить уравнение относительно I.

Представьте себе, что вы управляете движением робота и можете задавать направление его движения с помощью информационных сообщений: «север», «северо-восток , «восток», «юго-восток», «юг», «юго-запад», «запад» и «северо-запад» (рис. 1.11). Какое количество информации будет получать робот после каждого сообщения?

Рис. 1.11. Управление роботом с использованием информационных сообщений

 

Всего возможных информационных сообщений 8, поэтому формула (1.1) принимает вид уравнения относительно I:

8 - 2I.

Разложим стоящее в левой части уравнения число 8 на сомножители и представим его в степенной форме:

8 = 2 • 2 • 2 = 23.

Наше уравнение:

23 = 2I.

Равенство левой и правой частей уравнения справедливо, если равны показатели степени числа 2. Таким образом, / = 3 бита, т. е. количество информации, которое несет роботу каждое информационное сообщение, равно 3 битам.

 

1.5. Задание с выборочным ответом. Производится бросание симметричной четырехгранной пирамидки. Какое количество информации мы получаем в зрительном сообщении о ее падении на одну из граней?

1) 1 бит;     2) 2 бита;     3) 4 бита;     4) 1 байт.

1.6. Задание с кратким ответом. Из непрозрачного мешочка вынимают шарики с номерами и известно, что информационное сообщение о номере шарика несет 5 битов информации. Определите количество шариков в мешочке.

1.7. Задание с развернутым ответом. Какое количество информации при игре в крестики-нолики на поле размером 4x4 клетки получит второй игрок после первого хода первого игрока?

 

 

 

1.3.3. Алфавитный подход к определению количества информации

При алфавитном подходе к определению количества информации отвлекаются от содержания информации и рассматривают информационное сообщение как последовательность знаков определенной знаковой системы.

Информационная емкость знака. Представим себе, что необходимо передать информационное сообщение по каналу передачи информации от отправителя к получателю. Пусть сообщение кодируется с помощью знаковой системы, алфавит которой состоит из N знаков {1, ..., N}. В простейшем случае, когда длина кода сообщения составляет один знак, отправитель может послать одно из N возможных сообщений «1», «2», ..., «N», которое будет нести количество информации I (рис. 1.12).

Рис. 1.12. Передача информации

 

Формула (1.1) связывает между собой количество возможных информационных сообщений N и количество информации I, которое несет полученное сообщение. Тогда в рассматриваемой ситуации N — это количество знаков в алфавите знаковой системы, а I — количество информации, которое несет каждый знак:

N = 2I.

С помощью этой формулы можно, например, определить количество информации, которое несет знак в двоичной знаковой системе:

N = 2 => 2 = 2I=> 21 = 2I => I=1 бит.

Таким образом, в двоичной знаковой системе знак несет 1 бит информации. Интересно, что сама единица измерения количества информации «бит» (bit) получила свое название от английского словосочетания «Binary digiT» — «двоичная цифра».

 


Информационная емкость знака двоичной знаковой системы составляет 1 бит.


 

 

Чем большее количество знаков содержит алфавит знаковой системы, тем большее количество информации несет один знак. В качестве примера определим количество информации, которое несет буква русского алфавита. В русский алфавит входят 33 буквы, однако на практике часто для передачи сообщений используются только 32 буквы (исключается буква «ё»).

С помощью формулы (1.1) определим количество информации, которое несет буква русского алфавита:

N = 32 => 32 = 2I => 25 = 2I => I = 5 битов.

Таким образом, буква русского алфавита несет 5 битов информации (при алфавитном подходе к измерению количества информации).

 


Количество информации, которое несет знак, зависит от вероятности его получения. Если получатель заранее точно знает, какой знак придет, то полученное количество информации будет равно 0. Наоборот, чем менее вероятно получение знака, тем больше его информационная емкость.

В русской письменной речи частота использования букв в тексте различна, так в среднем на 1000 знаков осмысленного текста приходится 200 букв «а» и в сто раз меньшее количество буквы «ф» (всего 2). Таким образом, с точки зрения теории информации, информационная емкость знаков русского алфавита различна (у буквы «а» она наименьшая, а у буквы «ф» — наибольшая).


Количество информации в сообщении. Сообщение состоит из последовательности знаков, каждый из которых несет определенное количество информации.

Если знаки несут одинаковое количество информации, то количество информации IС в сообщении можно подсчитать, умножив количество информации I3, которое несет один знак, на длину кода (количество знаков в сообщении) К:


Ic =  I3 * K                                                     (1.2)


 

 

Так, каждая цифра двоичного компьютерного кода несет информацию в 1 бит. Следовательно, две цифры несут информацию в 2 бита, три цифры — в 3 бита и т. д. Количество информации в битах равно количеству цифр двоичного компьютерного кода (табл. 1.3).

 

Таблица 1.3. Количество информации, которое несет двоичный компьютерный код

 

Двоичный компьютерный код  

 1

 0

 1

 0

 1

Количество информации  

 1 бит  

 1 бит  

 1 бит  

 1 бит  

 1 бит

 

Задания для самостоятельного выполнения

 

1.8. Задание с выборочным ответом. Какое количество информации содержит один разряд двоичного числа?

1) 1 байт;     2) 3 бита;     3) 4 бита;     4) 1 бит.

1.9. Задание с кратким ответом. Какое количество информации несет двоичный код 10101010?

1.10. Задание с кратким ответом. Какова информационная емкость знака генетического кода?

 

Практические работы компьютерного практикума, рекомендуемые для выполнения в процессе изучения главы 1

 


Компьютерный практикум

№ 1: Вычисление количества информации с помощью калькулятора


Наверх


Начало | Глава 1 | Глава 2 | Глава 3 | Глава 4 | Практикум | Словарь терминов | Содержание | От Автора

 Электронный учебник©

Бабий Даниил

2008 год