Trigonometry





В тригонометрии выделяют три вида соотношений: 1) между самими тригонометрическими функциями; 2) между элементами плоского треугольника (тригонометрия на плоскости); 3) между элементами сферического треугольника, т. е. фигуры, высекаемой на сфере тремя плоскостями, проходящими через её центр (сферическая тригонометрия). Тригонометрия началась именно с наиболее сложной, сферической части. Она возникла прежде всего из практических нужд. Древние наблюдали за движением небесных светил. Учёные обрабатывали данные измерений, чтобы вести календарь и правильно определять время начала сева и сбора урожая, даты религиозных праздников. По звёздам вычисляли местонахождение корабля в море или направление движения каравана в пустыне.



Наблюдения за звёздным небом с незапамятных времён вели и астрологи. Естественно, все измерения, связанные с расположением светил на небосводе, — измерения косвенные. Прямые — осуществлялись только на поверхности Земли. Но и здесь далеко не всегда удавалось непосредственно определить расстояние между какими-то пунктами. И тогда вновь прибегали к косвенным измерениям. Например, вычисляли высоту дерева или размеры острова в море, сравнивая длину его тени с длиной тени от какого-нибудь шеста, высота которого была известна. Подобные задачи сводятся к анализу треугольника, в котором одни его элементы выражают через другие. Этим и занимается тригонометрия, А поскольку звёзды и планеты представлялись древним точками на небесной сфере, то сначала стала развиваться именно сферическая тригонометрия. Её считали разделом астрономии.



Первые отрывочные сведения по тригонометрии сохранились на клинописных табличках Древнего Вавилона. Астрономы и астрологи Междуречья научились предсказывать положения Луны и Солнца, достигнув в этом больших успехов. От них мы унаследовали систему измерения углов в градусах, минутах и секундах, основанную на принятой ими шестидесятеричной системе счисления. Однако первые по-настоящему важные достижения принадлежат древнегреческим учёным. Во II в. до н. э. астроном Гиппарх из Никеи составил таблицу для определения соотношений между элементами треугольников. Такие таблицы нужны потому, что значения тригонометрических функций нельзя вычислить по аргументам с помощью арифметических операций. Тригонометрические функции приходилось рассчитывать заранее и хранить в виде таблиц. Гиппарх подсчитал в круге заданного радиуса длины хорд, отвечающих всем углам от 0 до 180°, кратным 7,5°. По существу, это таблица синусов. Труды Гиппарха до нас не дошли, но многие сведения из них включены в «Альмагест» (II в.) — знаменитое сочинение в 13 книгах греческого астронома и математика Клавдия Птолемея. В «Альмагесте» автор приводит таблицу длин хорд окружности радиуса в 60 единиц, вычисленных с шагом 0,5° с точностью до 1/3600 единицы, и объясняет, как таблица составлялась. Труд Птолемея несколько веков служил введением в тригонометрию для астрономов.