Математическая составляющая в работах Эшера

На главную

История

Виды орнамента

Бордюр

Построение

Работы Эшера

Мои работы

Применение

Математическая составляющая в работах Эшера

Рассматривая математические принципы построения орнаментов нельзя не упомянуть работы известного художника Мориса Корнелиуса Эшера.

На первый взгляд, математика и изобразительное искусство очень удаленные друг от друга дисциплины, первая - аналитическая, вторая - эмоциональная. Однако, есть много художников, у которых математика находится в центре внимания.

Голландский художник М. К. Эшер (1898-1972) в некотором роде является отцом математического искусства. Математические идеи играют центральную роль в большинстве его картин за исключением лишь ранних работ.

При взгляде на любую из «мозаик» мастера у любого человека возникает подозрение на математическую закономерность.

Любопытно, что сам Эшер не мог похвастаться законченным математическим образованием.

Вот что писал об этом сам художник: «Я так ни разу и не смог получить хорошей оценки по математике. Забавно, что я неожиданно оказался связанным с этой наукой. Поверьте, в школе я был очень плохим учеником. И вот теперь математики используют мои рисунки для иллюстрации своих книг. Представьте себе, эти ученые люди принимают меня в свою компанию как потерянного и вновь обретенного брата! Они, кажется, не подозревают, что математически я абсолютно безграмотен».
В этих словах, наверное, есть доля преувеличения.

С помощью работ Мориса Эшера можно объяснить такие математические понятия и термины, изучаемые в школе, как: параллельный перенос, подобие фигур, равновеликие фигуры, периодичность. А так же некоторые понятия не входящие в школьный курс математики.

Однако самым интересным с точки зрения математики является замощение плоскости или мозаики. Замощение — это покрытие всей плоскости неперекрывающимися фигурами. Вероятно, впервые интерес к замощению возник в связи с построением мозаик, орнаментов и других узоров. Известно много орнаментов, составленных из повторяющихся мотивов.

Одно из простейших замощений можно описать так. Плоскость покрыта параллелограммами, причем все параллелограммы одинаковы. Любой параллелограмм этого замощения можно получить из первоначального параллелограмма, сдвигая его на вектор nU ± mV (векторы U и V определяются ребрами выделенного параллелограмма, n и m — целые числа). Следует отметить, что все замощение как целое переходит в себя при сдвиге на вектор U (или V). Это свойство можно взять в качестве определения: именно, периодическим замощением с периодами U и V назовем такое замощение, которое переходит в себя при сдвиге на вектор U и на вектор V.

Периодические замощения могут быть и весьма замысловатыми, некоторые из них очень красивы. Примером может служить периодическое замощение, придуманное Морисом Эшером («Всадники»).

Работы Мориса Эшера часто являются источником вдохновения для современных авторов, а также стали источником вдохновения и для меня.