ВЕЛИКИЕ МАТЕМАТИКИ

18 ВЕК
ДАНИИЛ БЕРНУЛЛИ
ИОГАН БЕРНУЛЛИ
ЛАГРАНЖ
ЛАПЛАС

ГЛАВНАЯ


ДРЕВНИЕ ГРЕКИ


СРЕДНЕВЕКОВЬЕ


16 ВЕК


17 ВЕК


18 ВЕК


19 ВЕК


РОССИЯ


ПЬЕР-СИМОН ЛАПЛАС

1749 — 1827

Лаплас

  Пьер-Симон Лаплас — французский математик и астроном; известен работами в области небесной механики, дифференциальных уравнений, один из создателей теории вероятностей. Заслуги Лапласа в области чистой и прикладной математики и особенно в астрономии громадны: он усовершенствовал почти все отделы этих наук. Родился в крестьянской семье в Бомон-ан-Ож, в нормандском департаменте Кальвадос. Учился в школе бенедиктинцев, из которой вышел, однако, убеждённым атеистом. Состоятельные соседи помогли способному мальчику поступить в университет города Кан (Нормандия). Посланный им в Турин и напечатанный там мемуар «Sur le calcul integral aux differences infiniment petites et aux differences finies» (1766) обратил на себя внимание учёных, и Лаплас был приглашён в Париж. Там он послал Даламберу мемуар об общих принципах механики. Тот сразу оценил юношу и помог устроиться преподавателем математики в Военную академию. Уладив житейские дела, Лаплас сразу приступил к штурму «главной проблемы небесной механики»: исследованию устойчивости Солнечной системы. Одновременно он публиковал важные работы по теории определителей, теории вероятностей, математической физике и др.

  1773: виртуозно применив математический анализ, Лаплас доказал, что орбиты планет устойчивы, и их среднее расстояние от Солнца не меняется от взаимного влияния (хотя испытывает периодические колебания). Даже Ньютон и Эйлер не были в этом уверены. Правда, позже выяснилось, что Лаплас не принял во внимание приливное трение, замедляющее вращение, и другие важные факторы. За эту работу 24-летний Лаплас был избран членом (адъюнктом) Парижской Академии наук.

  1778: женился на Шарлотте де Курти. У них родились сын, будущий генерал Лаплас, и дочь.

  1785: Лаплас становится действительным членом Парижской Академии наук. В этом же году, на одном из экзаменов, Лаплас высоко оценивает знания 17-летнего абитуриента Бонапарта. Впоследствии их отношения были неизменно тёплыми. В революционные годы Лаплас принял руководящее участие в работах комиссии по введению метрической системы, возглавлял Бюро долгот (так назывался французский Астрономический институт) и, как и Лагранж, читал лекции в Нормальной школе. На всех этапах бурной политической жизни тогдашней Франции Лаплас никогда не вступал в конфликты с властями, которые почти неизменно осыпали его почестями. Простонародное происхождение Лапласа не только предохранило его от репрессий революции, но и позволило занимать высокие должности. Хотя никаких политических принципов у него не было (впрочем, возможно, именно поэтому).

  1796: «Изложение системы мира» — популярный очерк результатов, позднее опубликованных в «Небесной механике», без формул и ярко изложенный. 1799: вышли первые два тома главного труда Лапласа — классической «Небесной механики» (кстати, именно Лаплас ввёл этот термин). В монографии излагаются движение планет, их формы вращения, приливы. Работа над монографией продолжалась 26 лет: том III вышел в 1802 году, том IV — в 1805-м, том V — в 1823—1825 гг. Стиль изложения был излишне сжатым, множество выкладок автор заменял словами «легко видеть, что…». Однако глубина анализа и богатство содержания сделали этот труд настольной книгой астрономов XIX века. В «Небесной механике» Лаплас подвел итоги как собственным исследованиям в этой области, так и трудам своих предшественников, начиная с Ньютона. Он дал всесторонний анализ известных движений тел Солнечной системы на основе закона всемирного тяготения и доказал ее устойчивость в смысле практической неизменности средних расстояний планет от Солнца и незначительности колебаний остальных элементов их орбит. Наряду с массой специальных результатов, касающихся движений отдельных планет, спутников и комет, фигуры планет, теории приливов и т. д., важнейшее значение имело общее заключение, опровергавшее мнение (которое разделял и Ньютон), что поддержание настоящего вида Солнечной системы требует вмешательства каких-то посторонних сверхъестественных сил. В одном из примечаний к этой книге Лаплас мимоходом изложил знаменитую гипотезу о происхождении Солнечной системы из газовой туманности, ранее высказанную Кантом.

  Лаплас в 1820-е годы Наполеон наградил Лапласа титулом графа Империи и всеми мыслимыми орденами и должностями. Он даже пробовал его на посту министра внутренних дел, но спустя 6 недель предпочёл признать свою ошибку. Лаплас внёс в управление, как выразился позднее Наполеон, «дух бесконечно малых», т. е. мелочность. Титул графа, данный ему в годы империи, Лаплас сменил вскоре после реставрации Бурбонов на титул маркиза и члена палаты пэров. 1812: грандиозная «Аналитическая теория вероятностей», в которой Лаплас также подытожил все свои и чужие результаты. 1814: «Опыт философии теории вероятностей» (популярное изложение). Современники отмечали доброжелательность Лапласа по отношению к молодым учёным, всегдашнюю готовность оказать помощь.

  Умер Лаплас 5 марта 1827 года в собственном имении под Парижем, на 78-м году жизни. В честь учёного названы: кратер на Луне; астероид 4628 Лаплас; многочисленные понятия и теоремы в математике.

ДОСТИЖЕНИЯ В МАТЕМАТИКЕ

  При решении прикладных задач Лаплас разработал методы математической физики, широко используемые и в наше время. Особенно важные результаты относятся к теории потенциала и специальным функциям. Его именем названо преобразование Лапласа и уравнение Лапласа. Он далеко продвинул линейную алгебру; в частности, Лаплас дал разложение определителя по минорам. Лаплас расширил и систематизировал математический фундамент теории вероятностей, ввёл производящие функции. Первая книга «Аналитической теории вероятностей» посвящена математическим основам; собственно теория вероятностей начинается во второй книге, в применении к дискретным случайным величинам. Там же — доказательство предельных теорем Муавра—Лапласа и приложения к математической обработке наблюдений, статистике народонаселения и «нравственным наукам». Лаплас развил также теорию ошибок и приближений методом наименьших квадратов.

МЕТОД НАИМЕНЬШИХ КВАДРАТОВ

  Метод наименьших квадратов — один из методов регрессионного анализа для оценки неизвестных величин по результатам измерений, содержащим случайные ошибки. Метод наименьших квадратов применяется также для приближённого представления заданной функции другими (более простыми) функциями и часто оказывается полезным при обработке наблюдений. Когда искомая величина может быть измерена непосредственно, как, например, длина отрезка или угол, то, для увеличения точности, измерение производится много раз, и за окончательный результат берут арифметическое среднее из всех отдельных измерений. Это правило арифметической середины основывается на соображениях теории вероятности; легко показать, что сумма квадратов уклонений отдельных измерений от арифметической середины будет меньше, чем сумма квадратов уклонений отдельных измерений от какой бы то ни было другой величины. Само правило арифметической середины представляет, следовательно, простейший случай метода наименьших квадратов. Большие затруднения представляются при определении из наблюдений величин, которые не могут быть измерены непосредственно. Если, например, желают определить элементы орбиты планеты или кометы, то светила эти наблюдаются несколько раз, и в результате получают лишь координаты их (склонение и прямое восхождение) в известные времена; самые же элементы выводятся затем решением уравнений, связывающих наблюдаемые координаты с элементами орбиты планеты или кометы. При этом, если бы число уравнений равнялось числу неизвестных, то для каждой неизвестной получилась бы одна определённая величина; если же число уравнений больше числа неизвестных, то, вследствие ошибок наблюдений, результаты решений отдельных групп этих уравнений в различных сочетаниях оказываются не совсем согласными между собой. До начала XIX в. учёные не имели опредёленных правил для решения системы уравнений, в которой число неизвестных менее числа уравнений; до этого времени употреблялись частные приёмы, зависевшие от вида уравнений и от остроумия вычислителей, и потому разные вычислители, исходя из тех же данных наблюдений, приходили к различным выводам. Лежандру (1805—06) и Гауссу (1794—95) принадлежит первое применение к решению указанной системы уравнений теории вероятности, исходя из начал, аналогичных с началом арифметической середины, уже издавна и, так сказать, бессознательно применяемых к выводам результатов в простейшем случае многократных измерений. Как и в случае арифметической середины, вновь изобретённый способ не даёт, конечно, истинных значений искомых, но даёт зато вероятнейшие значения. Этот способ распространён и усовершенствован дальнейшими изысканиями Лапласа, Энке, Бесселя, Ганзена и др. и получил название метода наименьших квадратов, потому что после подстановки в начальные уравнения неизвестных величин, выведенных этим способом, в правых частях уравнений получаются если и не нули, то небольшие величины, сумма квадратов которых оказывается меньшей, чем сумма квадратов подобных же остатков, после подстановки каких бы то ни было других значений неизвестных. Помимо этого, решение уравнений по способу наименьших квадратов даёт возможность выводить вероятные ошибки неизвестных, то есть даёт величины, по которым судят о степени точности выводов. Пусть дано решить систему уравнений

  ax + by + cz… + n = 0

  a1x + b1y + c1z… + n1 = 0 (1)

  a2x + b2y + c2z… + n2 = 0

   число которых более числа неизвестных x, у, z… Чтобы решить их по способу Н. квадратов, составляют новую систему уравнений, число которых равно числу неизвестных и которые затем решаются по обыкновенным правилам алгебры. Эти новые, или так называемые нормальные, уравнения составляются по следующему правилу: умножают сперва все данные уравнения на коэффициенты у первой неизвестной х и, сложив почленно, получают первое нормальное уравнение, умножают все данные уравнения на коэффициенты у второй неизвестной у и, сложив почленно, получают второе нормальное уравнение и т. д. Если означить для краткости:

  [aa] = a1a1 + a2a2 +…

  [ab] = a1b1 + a2b2 +…

  [ac] = a1c1 + a2c2 +…

  [bb] = bb1 + b2b2 +…

  [bc] = b1c1 + b2c2 +…

  то нормальные уравнения представятся в следующем простом виде:

  [aa]x + [ab]y + [ac]z +… [an] = 0

  [ab]x + [bb]y + [bc]z +… [bn] = 0 (2)

  [ac]x + [bc]y + [cc]z +… [cn] = 0

  Легко заметить, что коэффициенты нормальных уравнений весьма легко составляются из коэффициентов данных, и притом коэффициент у первой неизвестной во втором уравнении равен коэффициенту у второй неизвестной в первом, коэффициент у первой неизвестной в третьем уравнении равен коэффициенту у третьей неизвестной в первом и т. д. Для пояснения сказанного ниже приведено решение пяти уравнений с двумя неизвестными:

  5x — 8y — 16 = 0

  8x — y — 32 = 0

  16x + 8y — 55 = 0

  9x + 7y — 32 = 0

  9x + 20y — 29 = 0

  Составив значения [aa], [ab].., получаем следующие нормальные уравнения:

  507x + 323у — 1765 = 0

  323x + 578у — 1084 = 0,

  откуда х = +3,55; у = —0,109.

   Уравнения (1) представляют систему линейных уравнений, то есть уравнений, в которых все неизвестные входят в первой степени. В большинстве случаев уравнения, связывающие наблюдаемые и искомые величины, бывают высших степеней и даже трансцендентные, но это не изменяет сущности дела: предварительными изысканиями всегда можно найти величины искомых с таким приближением, что затем, разложив соответствующие функции в ряды и пренебрегая высшими степенями искомых поправок, можно привести любое уравнение к линейному. Строгое обоснование и установление границ содержательной применимости метода даны А. А. Марковым и А. Н. Колмогоровым